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Multi-Tethered Space-Based Interferometer; Particle System Model 

Introduction 

This report develops a dynamics model for a system of point masses 

interconnected by idealized tethers. The model is intended for the 

dynamic analysis of certain configurations of space based 

interferometers. The interferometer concepts under consideration are 

comprised of multiple collector elements and auxiliary bodies, 

interconnected in various arrangements by low mass flexible tethers. The 

constellation of components is to perform coordinated single axis 

rotational scanning accompanied by baseline dimensional changes. Spin 

axis reorientation and spin-up/spin-down maneuvers are also required. 

Figure-1 illustrates several candidate interferometer configurations 

which fall within the purview of the model developed here. 

The mechanical system considered in this report is comprised of a 

system of point masses interconnected in an arbitrary fashion by 

idealized tethers. The tethers are treated as massless tensile members 

capable of exerting force only along the straight-line connecting the 

respective end masses. The tethers do not support compression or any 

components of shear force or bending moment. Both extensible and 

inextensible tethers are considered. The constitutive character for the 

extensible tethers is taken as visco-elastic, allowing an intrinsic 

energy dissipation mechanism. The amount of unstretched tether deployed 

between end masses is allowed to vary in a specified manner, permitting 

study of deployment and retraction as well as fixed length operations. 

Each particle is subject to an arbitrary force arising from sources 

external to the system. Since the system is intended to operate at the 

L2 Lagrange point, gravitational and other environmental forces are 

assumed to be of secondary importance relative to inertial effects, and 

hence are not specifically considered here. 

The dynamical behavior of the system is described in a sequence of 

analyses. First, the general nonlinear unconstrained motion of the 

Manuscript approved August 3, 2001. 



system is considered. Important system linear and angular momentum 

quantities are defined and Lagrange's equations are used to produce the 

motion equations. The formulation is then generalized by the addition of 

rheonomic constraints to allow for specification of any or all the 

degrees of freedom. Lagrange's equations are augmented by Lagrange 

multipliers to incorporate the constraints. An algorithm is provided for 

the solution of the constrained system that guarantees satisfaction of 

the constraints and determination of the associated constraint forces. 

The unconstrained nonlinear motion equations are then linearized by 

considering small amplitude motions about a nominal steady rotation. The 

explicit linearized equations are obtained and properties of the 

coefficient matrices relevant to stability analyses are established. The 

nonlinear dynamics of the system with inextensible tethers and 

prescribed motion is treated in the Appendix. Tether inextensibilty is 

introduced through the addition of nonlinear kinematic constraint 

equations. Equations are established to determine the tether tension 

forces and any additional external forces needed to enforce prescribed 

motion. 

Important applications of the models developed here include: 

solution of particle position time histories relative to intended 

motions, determination of control forces necessary to produce intended 

motions, and evaluation of intrinsic stability characteristics of the 

system under conditions of steady motion. For a particle system free in 

space, which is intended to rotate coherently, and for which analyses of 

the type just mentioned are of interest, the choice of reference frame 

in which to describe the motion requires some consideration. Since there 

is no rigid body in which to embed a reference frame the usual "body 

fixed" frame of attitude dynamics is not available. Of course an 

inertial frame is available, and is indeed necessary, but coordinates 

referred to it are, perhaps, not the most convenient in which to 

linearize. A "mean axes" frame111* could be defined (provided the system 

possesses a sufficient number of particles), however, its utility is 

Superscript numbers enclosed in brackets indicate reference numbers. 



diminished if small vibration modal coordinates are not introduced 2 . 

Given our dynamical interests, the application of a mean axes frame 

appears problematical. These considerations have lead to the definition 

of a "prescribed motion" reference frame in which to measure the 

particle positions. The rotation of this frame relative to inertial 

space can be arbitrary, but is assumed to be fully specified as a 

function of time. It will be found that the use of this prescribed 

motion frame facilitates specification of prescribed motion studies as 

well as linearization. 

u 
Muati-Plane Ring Planar Ring 

Planar Tetra-Triangle 

Figure-1.  Tethered Interferometer Concepts within Purview of Model. 



System Definition 

The system is comprised of N point masses PL    (i=l,2,...,N). In 

general, Pi   can be connected to JR , (i*j), allowing the possibility of 

up to ^N(N-l) connecting tethers. Let ?j be an inertial reference 

frame, with origin at point-I, and unit basis vectors I, J, K.  ?p 

designates a "prescribed motion" reference frame. The origin of ?p is 

point-I, and its unit basis vectors are denoted ip, jp, kp. The rotational 

motion of 7 with respect to J^ is considered to be a known function of 

time. Pi   has mass mi , and position vector with respect to point-I given 

by Pi. The total system mass is 

mt = jT 
mi 

The position of the system mass center with respect to point-I is 

denoted pffi , and is defined by 

1  N 
Pffi = — X miPi (1) 

Figure-2 illustrates the system geometry. 

Figure-2. System Geometry. 

Let v denote the time derivative of a vector v observed in ?x 

The absolute velocity of P±   can then be written as 

Pi = Pi+ 0) x Pi (2) 



where <B is the angular velocity of ?p with respect to ?x, and p\ 

designates the time derivative of pA observed in ?p . 

Of general dynamical interest are the system linear momentum and 

its angular momentum about point-I. The linear momentum of the system is 

defined as 

N N     .       N 

L = ]T Li = £ %Pi = X mi< Pi+ ä X *iJ (3) 

i = l      i = l i = l 

The angular momentum of the system about point-I is defined as 

N 

H = ^piXLi (4) 
i=l 

If the vector resultant of all the external forces acting on the 

particles of the system is zero, then it follows from Newton's laws that 

£ = Ö (5) 

Similarly, if the vector sum of the moments about point-I of all the 

external forces acting on the system is zero, then 

5=0 (6) 

The kinetic energy for the system is defined as 

N 

T = iX™^1' P1 <7) 

i=l 

Generalized Coordinates 

The system configurations of interest for this report all involve 

a planar arrangement of collector elements that are to rotate about an 

axis perpendicular to that plane. Radial motions of the elements are to 

accompany the rotations. To ease the prescription of such motions and to 

facilitate later linearization, cylindrical coordinates measured 

relative to ?p are selected to describe the positions of the point 

masses. The cylindrical coordinates are defined such that 



Pi = rL cos QL i + TL sin Q± jp + zL kp 

For this choice of coordinates, it should be evident that for the study 

of the nominal rotational motion described above, kp is the preferred 

axis of rotation. Let p. denote the 3x1 column matrix of the scalar 
—i 

components of p\ resolved in ?p . In terms of the vectrix notation of 

Hughes13' we have 

'ri cos 6i" 

ii sin Qi (8) Pi = "Pi P< = ?l 

The angular velocity (5 resolved into components referred to ?p , is 

expressed as 

CD ?p « = ?pT «V 
CO. 

The absolute velocity of Px   given by Eg.(2) can now be written as 

/ . 

Pi    = ?p (P. +(0*?,)   = 9p 

iL cos Q± - r^ sin BL + (0yzi - co^ sin 6± 

ij sin Q± + riQi cos Q± + oo^ cos Sj — (ä^i 

z± + (oxrt sin Qi - (Dy^ cos QL 

(9) 

where we have introduced the cross product operator 

b = 

-b, 

0 

It is desirable to refer certain vector quantities to their scalar 

components in ?j . Define [CIp] be the direction cosine matrix that 

transforms vector components referred to 5^ , to those referred to 5^. 

In terms of the notation of Hughes, we write 

?i = rcIp] ?p 
(10) 



Let the vector quantities:   pe .   L4,   L,   and  H  have scalar components 

referred to   S,,   denoted as   g   .   L^ ,   Lp ,   and   Hp ,   then we  can write 

£e=tI>Pi        ; ^  =mi(pi + fflxpi) 
i=l 

Lp=SLi ; H^Xp^Li 
i = l 

Resolving vectors pffi , L, and H into components in 7i.   and denoting the 

associated 3x1 column matrices by R® , Lx, and Hj respectively, we have 

Rffi = tcIp]pe 

hi  = ICjp] Lp 

Hj  = IC1P] Hp 

The quantities Lj- and Kz   are conserved under the conditions described 

preceding Eqs.(5) and (6). 

Substituting Eq.(9) into (7) yields the scalar form of the system 

kinetic energy 

N 

T   =    2   X mÄ    ^   [ ^   "  2Zi< ®X  Sln öi   "   &Y  COS 9i   ' ] 
i = l 

+ r^i [ r±( Gi + 2 0)2) - 2 z±( fi)x cos B± + (dy sin 6i ) ] 

+ z± [ ii + 2r±( oax sin 9i - ü>y cos Gj )] (ID 

+ vl [ <*£ + (<ax sin 6i - e>y cos QL f ] + z* (fi>x + co£ ) 

- 2rizi(0z( <ax cos Q± + <Dy sin 6± ) } 

Lagranoe's Equations 

The equations of motion are first developed assuming the 3N 

generalized coordinates are independent. Later, prescribed motion 

constraints are introduced. 

Assuming the generalized coordinates ri# Qit zt, (i=l, 2 , . . . ,N) are 

independent, Lagrange's equations for the system can be written as 



d 

dt 
f31  1 

3rA 

3T 
- -r— = Qri or. 

d 

dt 

dT 3T 
= Qei 

d 

dt 
= Qzi 

(12a) 

(12b) 

(12c) 

for i=l,2,...,N. Qri , Qei , and Qzi are the generalized forces associated 

with the indicated degrees of freedom, arising from both internal and 

external forces acting on the particles. Performing the indicated 

derivatives on the left hand side of Eqs.(12) we record the following 

d 

dt 
—   = m^i - 

l3rJ 
(13a) 

d 

dt 

fdr ) 
[aej 

mi(Q2izi + Q2iZi) 

= m^Öi + mi[ri
2äz+2rifi(e1+ (üz) - Qli(riz1 + r^) - r^Ö^]       (13b) 

d 

dt 

3T 
= ttiiZi + m^^^+ä^r^ (13c) 

3T 

drj 
—- = m1[(r1e1+2r1ffl,-QuZ1)61 + £2^ + ( fi)z + ß^ ) rA - oo.ßuzj      (14a) 

3T 

ae< 
= mJQuCriii- z1i1+ r?Q2i) + G^z^Oi + <BZ)] 

-^- = mA[ (co2 + (a2) Zi - öuri( 6i + toz) - G^ ] 
dz. 

In Eqs.(13)   and   (14)   we  have  introduced  the  following quantities: 

Gu = oax cos 6i + (0y sin Gi 

G2i = <BX sin Gi - 0)y cos e± 

an = <»x cos Bi + <by sin Si 

a2i   = ®x sin Öi - ö)y cos Si 

"li    =   «li    " Q2i6i 

(14b) 

(14c) 

(15a) 

(15b) 

(15c) 

(15d) 

(15e) 



Q2i  = <x2i + fiuOi (15£) 

Generalized Forces 

The forces acting on the particles may be divided into those 

arising from sources external to the system and those arising from the 

interconnections between particles. Consider first the external forces 

acting on PL .   Let Fj be the resultant of the external forces acting on 

pi . It proves convenient to resolve FA into three orthogonal components 

along directions that conform naturally to the cylindrical coordinates. 

For Pt   we define a Cartesian reference frame ^, having unit basis 

vectors ej.1', e^1, e™  where; ej.1' is directed along (Pi-Pi-kp), e^11 is 

S<i> - S<i) (i) parallel to k , and ejr' = e^1' x ej.1'. Then we can write 

Pi =# 

*ri 

Fti 

F • 

(16) 

Figure-3 illustrates the situation in the ipjp plane. 

Jr 

Figure-3. Resolution of External Force on Pi 

From Eqs.(8) and (10) we have 

Pi = H [CIp(t)]Pi(ri( ei/Zi) 

The virtual displacement of Px   is given by 



8pi   = —- Sri + 3T-8ei + 3—5zi d^ dQ± azi 

-f«<w(^<&'^^B)«^*^I!,)^) 

sinSj 8^ + rL cosSi 88i 

Sz, 

(17) 

where 8^, 80J, and bzi  are the virtual displacements of the generalized 

coordinates of Pi . The direction cosine matrix transforming vector 

components from ?p to ?A is given by 

[ Cip] = 

cos 0±    sin Qi    0 

-sin 6± cos Qt    0 

0      0   1 

Resolved into scalar components referred to ^, Spi can be expressed as 

SPi = 5f liSOi 

,5z,, 

The virtual work performed by the external forces acting on the system 

is given by 

8w(e» = J^-Spi 
i=l 

N 

=   X ( Fri8r*   + Ftiri56i   + Fzi8zi) 
i=l 

= X ( QS 5ri + Q<
e* SGi + Q« 8zJ (18) 

i=l 

In Eg. (18) we have introduced the notation, QJf*, to designate the 

generalized force associated with generalized coordinate ß,, 

10 



(ßi = r^e^Zi) arising from the action of the external forces acting on 

Pi- 

Let fi:) be the force acting on Pi   arising from its connection to 

A ,   (i*j). To allow arbitrary connectivity we assume that each particle 

could be connected to every other particle of the system. The vector 

resultant of all internal forces acting on Px   is 

The virtual work performed by fj on  PL   is given by 

The virtual work performed by all the internal forces acting on all the 

particles of the system is 

sv^XXV^ (19) 
i=lj=l 

By assumption the tethers are only capable of exerting tensile 

force along the straight line connecting their respective end masses, 

thus 

fij = fij * ° (20) 

Let l1:j be the position vector from p±   to Pj, i.e. 

I« = Pj-Pi  = % 

' ij cos Bj - rA cos Q± 

rj sin Sj - rL sin Bi 

Zj - zi 

(21) 

The distance between ?\ and Ä is 

1ij   ~  1ji   -     1ij 

= ^ r? + r2 - 2^ cos (8-j - OJ + ( zi -Z;f (22) 

11 



and its  time derivative  is 

i±j = [r^fi + r,r, - (x^r, + r^) cosOj-6J 

+ r^Gj-eiisintej-ei) +(zj-zi) (Zj-zjl/lij 

To allow the possibility of energy dissipation in the tethers, 

their constitutive character is assumed to be visco-elastic. Further, we 

assume that the length of unstrained tether deployed between any two 

particles of the system is a known function of time. Let the scalar 

di;j(t) be the length of unstrained tether deployed between Pi   and P^  at 

time t. Temporarily dropping the particle subscript notation, the 

longitudinal strain of a tether is defined as 

Mt) - d(t) 
e =   

d(t) 

Assuming a Kelvin-Voigt"1 constitutive law, the tensile stress, T, and 

the longitudinal strain are related by 

X =  E(E + ae) 

where E is the effective Young's modulus for the tether and a is a 

constant dissipation parameter. If A is the effective cross sectional 

area of the tether, then the tension is given by 

AT    8 > 0, T > 0 

0 

Assuming that e<<l, and re-establishing the particle subscript 

notation, the tension in the tether connecting Pi   and ?>■ can be written 

as 

. . f !i^di: 
kijdlJ-dijJ+Oydij-dy)    if 

[ Cijdij- di;j) 2 -k^Uij- di;i) 
(23) fij   = 

otherwise 

where the effective stiffness kAj , and damping coefficient c^, are 

12 



kij    -  kji    - 
(EA) 

dij 

ij 
cij   -   cji   _   ^j^ij 

The virtual work done by the internal forces of the system, given 

by Eq.(19), can now be expressed as 

8w' (i) 
N  N c 

-lit1»*' 
i=i j=i i: 

Using Eqs.(17)   and  (21)   we get 

8w(i)  = £ [ QS Sr, + Q(£ 86, + Q<» 8Zi ] 
i=l 

where  the generalized forces associated with the  internal   forces  are 

given by 

§i  = ■Xr1 
j=i  x^ 

'°i^ 
(24) 

In Eq.(24)   we have introduced the quantities 

ci:j = ij cos (6j - 6*) - r, 

Xij = -Tji  = qrj sintej-öi) 

(25a) 

(25b) 

(25c) 

The generalized forces appearing on the right hand side of Eq.(12) can 

now be written as 

Qpi = QJS + <$ 

(ßi = ri.Bi.Zi). 

Substituting Eqs.(13),(14) and (26) into Eqs.(12) yields the 

nonlinear motion equations for the system 

(26) 

(27) 

13 



( i = 1, 2, . . ., N ),   where 

[Mli  = mi 

10    0 

0     0    1 

viä   = 0i 

zi V    x  J 

Q(e)  = 

<   F •     N r
ri 

^Fti 

F., 

Si =  m. 

r^cot+n^) + ZitOai-fl^Qn) + r^e^o»,)^ + 2Q2iZi 

rf ( flü^i -wz) + riZi[Qu + Q2i( 6i + oi,)] + 2rJ fi^ - ((^ + ca,) i. ] 

Zi(o)=+t^) - 2Q2ifi-rita2i+Qli(28i+(Dz)] 

(28) 

Prescribed Motion 

Define the vectors of generalized coordinates and forces for the 

system as 

{ g }T  = { *i 6-L zx r2 G2 z2 ... rN 6N zN } = { qx q2 . . . q3N } 

{ Q }T = { Qri Qei Q«i Qr2 Qez Qz2 • • • QrN Q« QZN } = { Qi Q2 • • • Q3N } 

Using the above notation and that of Eq.(26), Lagrange's equations for 

the unconstrained system can be written as 

d 

dt 

'*r^ 

3qv 

3T 

3qk 
= o? + <#' 

for k = 1, 2, . . ., 3N , or, collectively, as 

d 

dt 
|g}-{*}.fc-Mo»} (29) 

For the study of prescribed motion we assume that np of the 

generalized coordinates {q}, are known functions of time. We assume the 

presence of rheonomic constraints of the form 

{qp(t)} = [S_]
T{q} (30) 

where {qp(t)} is an npxl column matrix of known time functions ( np < 3N ) , 

and [S ] is a 3NXnp Boolean selection matrix. The generalized 

14 



coordinates have been chosen so that the system motions of interest 

could be described in this simple manner. It is known from analytical 

mechanics that Lagrange's equations for a system subject to constraints 

of the form given by Eq.(3 0), can be written as 

d 

dt {SHSHQ,*MQ'"}-[s>m (31) 

where {A.} is an npxl vector of Lagrange multipliers. 

Using the nomenclature established for Eq.(27), the nonlinear 

motion equations for the system subject to the constraints of Eq.(30) 

are now written as 

[*]{£} = {Q<e,} +{*} + {*}-[Sp]{M (32) 

where 

t«T] = 

[K]x     [0] 

[0]  [M]2 

[0]  [0] 

[0] 

[0] 

[M]N 

(e) , = {Q*> } 

(  Q(e» ^ 
-l 

Q(e) 
—2 

Q(e) 
—N 

{*} = 

'5^ 

N, 

N„ 

{S} = 

The last term on the right hand side of Eq. (32) can be interpreted 

as the generalized force required to enforce the constraints, .i.e. 

{Q(c>} = -[S_]{M (33) 

To establish the physical forces of constraint some specific 

deterministic arrangement of scalar force components must be considered. 

Here we shall assume a system of constraint forces 

5(c) i = 1, 2, . . ., N  , (not  necessarily all  nonzero)   which act  in parallel 

15 



with the applied external forces defined by Eq.(16). Resolved in frame 

5^ the components of F^' are designated as 

F (c) _ ?l 

-.(c) 

w(c) 

Equation (18) specifies the relations between the components of the 

external forces and the corresponding generalized forces. Relations 

identical to those of Eq.(18) exist between the components of ff1 and 

the generalized constraint forces embodied by Eq.(33). Thus, the 

physical constraint forces are related to the Lagrange multipliers by 

= -rsDHM (34) 

Equations (30) and (32) constitute a system of 3N + np 

differential-algebraic equations in 3N + np unknowns, {q} and {X} .   Given 

the simple form of the constraint equations, Eq.(30), a coordinate 

transformation can be made which yields a set of differential equations 

in terms of an independent set of generalized coordinates, which are 

uncoupled from the Lagrange multipliers. Define the set of generalized 

coordinates which are not prescribed (i.e. which are "free") as 

{qf} = [Sf]
T{q} (35) 

where [Sf] is a 3Nx(3N-nD ) Boolean selection matrix. Equations (30) and 
p 

(35) can be written together as 

Mqfn 
{qP} 

= [[Sf]    fSp]]{q} = rS]T{q} 

16 



It follows from the simple Boolean structure of the matrices [SE] and 

[Sp], and the complementary nature of the coordinates {qf} and {qp}, 

that [S] is an orthogonal matrix. Consequently, we have 

rUfp 
{q} = [[Sf]   [Sp]] 

{qP} 
(36) 

[Sp]T [Sp] = [1]     npXnp 

[Sf]
T [Sp] = [0]    (3N-np)Xnp 

Substituting Eq.(36)   into Eq.(32),   and premultiplying the result by 

[S]T,   yields the partitioned system 

[Sf]
T[^][Sf]{qf} = [Sf]

T({Q(e)} + {«} + {5}-[«][Sp]{qp})        (37) 

{M = [Sp]
T({Q(e,} + {«}+{5}-[^]([Sf]{qf} + [Sp]{qp})) (38) 

Given   {qp},   {qp},   and  {qp},   Eq.(37)   can be  integrated to determine   {qf}, 

and Eq.(38)   can be evaluated to determine   {XXt)}. 

Linearization of  the Unconstrained Motion Equations 

In this section we linearize the unconstrained motion equations 

about a state of  steady spin with the tethers of  fixed unstrained 

length.   Throughout  this  section 

(39a) ©=0 

di:j = 0      i, j = 1, 2, . . ., N 

The coordinates of PL  relative to ?p are taken to be 

rA = rf + ArA(t) 

8i = 9? + A8i(t) 

Zj = z\  +  AZi(t) 

(39b) 

(40a) 

(40b) 

(40c) 

17 



where r°, Gj, and z\   are constants defining the steady state equilibrium 

configuration. The variables Ar^ A8if AZi and their time derivatives are 

considered to be quantities of small magnitude, and we will ignore terms 

in which they appear to second or higher order. Following the notation 

established in Eqs.(40), we introduce also 

üi = u- + Au.(t) 

{q}={q°}+{Aq(t)} 

Recognizing Eq.(39a) and substituting Eq.(40b) into Eqs.(15) 

yields 

<22i =Q^ +£2°liA9i 

au = a2i = o 

n1L = si°2i A9i 

Q2i   =    Q^ABi 

(41a) 

(41b) 

(41c) 

(41d) 

(41e) 

Above we have  introduced the constants 

ß^i   = <öx cos 9° + <By sin6- 

Q? oox sin 8° - 0)y cos0° 

Substituting Eqs.(40) and (41) into Eq.(28) and ignoring second and 

higher order terms, we get 

N. s  -[ G ]i AÜ. - [ C ]A Au. + Nj 

where 

Au, = 

'Ar^ 

A8, 

Azf 

0 -«.r? lz2i 

[G]L = 2mi G>z*i 0 -n°. r? "li Ii 

"2i "li ri 0 

(42) 

18 



[C]i   =  itii 

at flu -«A if -<a£ + a$) 

S = mi 

The  linearized counterpart  to the mass matrix appearing in Eq.(27)   is 

[Moli  = 

10 0 

0 (r?)2 0 

0      0      1 

(43) 

Linearizing Eqs.(25) about the steady state solution we have 

<*ij   =   <Tij   + <*ij (44a) 

Xij  = x°i:j + xij (44b) 

ft E ft + ft (44c) 

where  the constant terms  are defined as 

o;d = ^coBfeJ-e;)-^0 (45a) 

(45b) 

ft   = "ft   " zj  ~ (45c) 

and the terms dependent to first order on the deflections from the 

steady state are recorded as 

O^ = cos (8j - Si) Aij - Ar4 - rj> sin (8!? - 0?) (AOj - A6J (46a) 

Tij = rfsinteJ-eZjAr, + ij0 sin(ej -6?) Ar* + r° r^cos (ej-ej ) (Aft, -A6J      (46b) 

ft   = Azj - AZi (46c) 
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Expanding Eq.(22)   to first order we  have 

where 

and 

lij  = l°Li + iij 

1?,   = J (r° f + (r°)2 - 2^° cos (9° -6» ) + (z°-z° )2 

*«   = 4" [-°?i Ar1 " CT°iD Ari  + T°i (Aej-AOi) + Cii (AZj-AZi) ] (47) 

We also record 

■'•in 

and 

i  = i1 = 4- [ -°Si ^1 " °i: Ai:i + T?j < A&, - A^) + «j <AZj -Az, ) ] 

(48) 

(49) 

For our stipulated conditions, Eg.(23) simplifies to 

; l 
fij    =   fij   + kij ^ij   +  Cij 1i3 (50) 

where 

f^ = f°i =kij(l°j -d±j ) (51) 

is the steady state tension in the tether connecting p±   and P^ . 

Substituting Eqs. (44), (48) and (50) into Eq. (24), and dropping 

terms above first order, yields 

fo?i] 
N 

I f?. 
1° ^ 

1 = 1 ""-IT 
j*i {^3   ) 

j = l 1i1 

«ij 

ft 

+ <ki1-TT") 
ij 

& 

IM (52) 
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7ij 

j=l   Aij 

ft 

iid 

Introducing Eqs.(46),(47)   and   (49)   into Eq.(52),   we  can write 

S4   = Sj -triaAqJ-tZJlitAg} 

where 

j=i   1ij 
j*i 

( -.0     \ 

ft 

(53) 

[*]i   = -[[K]n    [K]i2    -    [K]«  ] (54) 

Introducing 

[Klij 

Krr 
Kre Krz 

K8r 
Kee K9z 

K« Kz6 Kzz 

•2,  =e?i  -dSj)" ki3" 

Cij 

IV. 
13 

we have  for*  i *■ j 

(Krr hi   =  <*rr >>!   =  -^rfrfi   + rf COS (8° -6?) 
ij 

(Kre Jy = eya^Xy - -±ir° sin(e^-8°) 
Xij 

( Krz )ij   -   eij °ij £ij 

0   _0    _0      ,    I-ij   _0 (KarJii "(Krtiji =-e;jaj
0
ix

0
lj+-^ri°Sin(e3

u-eu
i) 

(Kee)« =(Keei,i = ^ < ^ )2 + -f r° r° cos (8? - 8?) 
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( KGz   )ij    -   ( K9z  )ji    _   eij Tij tij 

(K,r  )id   =   (K«)^   =   -eJjO^tfj 

( Kz8   )ij    _   ( Kz0   )ji    -   ( K6z   hj 

(KZ2   ) ij    -   ( Kzz   )ji    —   eij ^ Sij )     +o 

For   j = i   we have: 

„0   ,„0   »2   |     ij 
eiJ(aiD)    + 7T 

xij 

sym 

(Kr8 )ij     (Krz^ij 

(K«)ij 

For the coefficient matrix of the last term on the right hand side of 

Eq.(53) we have 

IV\   = -[[Dlu [D]u - [D]iN ] (55) 

'13 
[D]ij    = o     2 3 (l?j)2 

-CTijCji     CTijTi-j     CTijtij 

-0    _0 ,„0   »2        _0    t-0 

ro  ^-0      f° T°      if0  v 

i * j 

Evidently   [D]ld   is not  symmetric.   We have also 

j=l  Uij' 
j*i 

l~ 0    ,2      _0    _0 _0    f-° 
(<*ij)        «ij^ij CTijtij 

/-0    .2 _0    f-0 
(tij > ti;i tij 

sym (C?j )2 

Substituting Eqs.(42),(43) and (53) into Eq.(27), and rearranging, 

yields 

[MjiAÜj + [G^AÜ.   + [CliAu.  +[f>]1{Aq} + [«^{Aq} 
(56) 
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of + N0, + §° 

for i = l, 2, ...,N. Assembling the system of equations given by Eq. (56) as 

a single matrix equation, yields 

[*f0 ]{Aq} + ([?] + [Z>] ){Aq} + ([£] + [*] ){Aq} 

where 

[*U = 

[Molj.     [0]      -    [0] 

[0]       [M0]a    -    [0] 

[0]        [0]       -   [Mo]N 

[<?] = 

[Z>]  = 

{%} = 

[Z>]2 

*°2 

«a 

t^] = 

[Cli    [0]      -    [0] 

[0]     [C]2   -   to] 

to]      [0]      •••   [C]N 

[*:] = 

u,}- 

m2 

• ^ 

s2 

(57) 

[Oli    [0]      ■••    [0] 

[0]      [G]2    -    [0] 

[0]      [0]      •••   [G]N 

The vector of external forces appearing in Eq. (57) can be 

separated into two terms, one constant, { QJ,e) } , and the other time 

dependent, {Q^'tt)}, i.e. 

{Q(e,}= {Qi,e,} + {Qr'<t)} 

If we consider Eq.(57) under the conditions 

(58) 
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{Aq} = {Aq} = { Aq } = { Q<e)(t)} = {0} 

then we  find the  steady state  equilibrium equations  for the  system are 

{Qloe)} + {%) + {S0) = {0} (59) 

Equations   (59)   constitute  a system of  3N nonlinear algebraic  equations 

in the  quantities;   r°, 0°, z°   , i = 1, 2, . . ., N . 

Recognizing Eq.(59),   the  linearized motion equations  for  the 

unconstrained system follow from Eq.(57),   as 

[3*0]{Aq}+([?] + [Z>]){Aq} + ([<?] + [2r]){Aq} = fe^t)} (60) 

The following properties of the coefficient matrices appearing in 

Eq.(60)   are noted: 

[W0]=[%0]
T [£3=-[<?]T [Z>] = [Z>]T 

[ e ] = [ 6 ]T        [ ST ] = [ -K f 

Model Singularity 

A unique solution to any of the various sets of motion equations 

derived in this report, (e.g. Eqs.(27), (37), or (60)), requires that 

the coefficient mass matrix of the generalized accelerations be 

nonsingular. For the unconstrained systems (linear and nonlinear), the 

mass matrices [ 1K ] , and [ W0 ] , are diagonal and possess elements r± and 

r° , (i=l,2, . . .,N) , respectively. Evidently, if rA=0 or r° =0 then the 

associated mass matrix would be singular. This is a consequence of our 

choice of coordinates rather than an indication of a physical 

degeneracy. This deficiency of the models can be avoided by limiting 

attention to only those conditions for which r^O (or r° #0 for linear 

analyses), (i=l,2,...,N). The situation with the constrained nonlinear 

equations is somewhat more involved. The generalized mass matrix, from 

Eq. (37) , is [Sf]
T[»£] [Sf] , and it can be shown that that matrix is 

nonsingular if [ 1K ] is nonsingular. {[SE]
T[«tr] [Sf] may also be 

nonsingular when [ 7X ]   is singular, depending on which degrees of 
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freedom are specified.) The restriction to conditions for which TX¥=0, 

however, guarantees a unique solution for Eq.(37) also. 

Kinematics of ?r 

The motion ?p relative to ?r has been assumed to be a known 

function of time. To complete the formulation we shall define the 

orientation of ?p with respect to 5^ in terms of a general 1-2-3 Euler 

angle sequence. The orthogonal unit basis vectors i, j, k for each frame 

referred to below will be denoted with appropriate subscript and 

superscript identifiers. The signs of all single axis rotations are 

positive according to the right hand rule. Let ?[  be an intermediate 

frame achieved from ?x by a rotation of angle ^ about the I axis. Let 

frame ?'   be achieved from j£ by rotation of angle i|r2 about the axis j'p . 

7    is achieved from ?p by a rotation of angle i|f3 about the kp axis. The 

direction cosine matrix transforming vector components from ?p to 5^ is 

obtained by concatenating the sequence of single axis rotations yielding 

[Cip] = 

CI|J2CI|;3 -C1^2S*3 B^2 

ol^sil^ + si|r1silr2c\|f3    ci^ci^ - sil^silrjSil/j    -si^cil^ 

silfiSTjra — cil»! si)r2CTjf 3    si^ci)^ + GI^SII^SI!^     ci^ci^ 

where we -have used the shorthand notation: c^L =cos i)^,    si)^ = sin T|T± . 

The angular velocity of ?p with respect to 5^, expressed in terms of 

the Euler angles is 

3 = *! I + ijr2 j'p + iir3 kp 

Resolved into components referred to ?p we have 

co = 

ci|r2c\);3     81)13    0 

-ci|;2si|/3    ci|f3    0 

sijr2 0      1 

*2 

*3 

= [n]i(f 
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Appendix - Inextensible Tethers 

In the main body of this report we have developed the equations 

governing the motion of a system of particles interconnected by 

idealized extensible tethers subject to applied external forces as well 

as prescribed motion. The formulation presumes that the length of 

unstrained tether deployed at any instant is known a-priori. Clearly, 

the unstrained length of tether deployed has a strong influence on the 

tether tension, which is to be a principal means of stabilization and 

control of the system. In certain circumstances (e.g. inverse dynamic 

analysis) the need to specify tether unstrained length time history 

proves to be problematical and simplification is obtained by treating 

the tethers as inextensible. Inextensible tethers are introduced through 

the definition of inter-particle distance constraints. Unlike extensible 

tethers, for which tension is described by constitutive equations (as in 

Eq.(23)), with inextensible tethers the tensions must be solved for as 

constraint forces. In this appendix all tethers of the system are taken 

to be inextensible. Supplemental prescribed motion constraints are also 

considered and the forces necessary to produce those motions are 

determined. 

Let nt be the total number of tethers in the system, and let 

tether k connect particles Pi   and P^ .   The distance between Pi   and P^   is 

given in Eq. (22) by 1^ . Let di;j(t) be the length of inextensible tether 

instantaneously deployed between Pi   and P^ .   We shall assume that di;)(t) 

is a known function of time. If Tk is the tension in tether k, then the 

constraint governing tether inextensibility is 

ri±J = dia(t)    if Tk >o (6i) 

[ no constraint if Tk < 0 

Whether the kinematic constraint of Eq.(61) is in effect or not depends 

on the tension force, so the system is seen to possess a discontinuous 

number of degrees of freedom. Rather than deal with the complication of 

the discontinuity, we shall simply enforce the constraint at all times 

and recognize that the occurrence of non-positive tension invalidates 

26 



our results from that point onward. We note that taking Eq.(61) to hold 

for all Tk corresponds to the condition of a rigid link. 

It proves convenient to state the tether constraints in the form 

or 

hk(ri( 8i( zi# rj( ejf zj# t) = (lid )2 - (dy )2  = 0 

hk(q, t) = rA
2 +rj

2 -^rj cos(ej-ei) + (zj-zi)
2 -(dij)2   =0 (62) 

For the entire system of nt tethers the constraints are written as 

h^q.t) 

h2(q,t) 
{h(q,t)} = • 

hn (q,t) 

= 0 (63) 

To permit the study of prescribed motion and to allow the 

determination of the associated control forces we consider in addition 

to Eq. (63) the np constraints given by Eq. (30) . The complete set of 

nt +n  constraints is expressed as 

{*(q,t)} = • 

{h(q,t)} 

[SD]
T{q}-{qp(t)} 

= 0 (64) 

It is required that nt+np <,  3N, and that the constraints of Eq. (64) be 

consistent and functionally independent. 

Lagranges equations for our system of particles subject to the 

constraints of Eq.(64) can be written as 

d 

dt {tHSH'"'1-'*'™ (65) 

which must be considered together with the constraint equations given by 

Eq.(64). Note that in comparison with Eq.(31), Eq.(65) does not contain 

the generalized forces associated with any internal forces, since here 

the tether tensions, being constraint forces, do no work in virtual 
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displacements consistent with the constraints. In Eq.(65) we have 

introduced the Jacobian of the constraints 

[*„] = 
* 

[spr 

where 

3h 

3q 

3hi 3h! 
O0J 

9hj 
3zj 

3hx 

3r2 3zN 

3h2 

3ri 

3h2 3h2 

3zj 
3h2 

3r2 

3h2 

3z„ 

3h„t 3hnt 3hnt 3h„t 

3r2 

3hnt 

dz„ 

Forming the partial derivatives indicated above from Eq.(62) we record 

dhj 

3r, 
■k _ ^(aijS^ + OjiS^ ) 

dh. 3^ = 2x^(^-8«) 

for I  = 1,2,...,N. 8i;j is the usual Kronecker delta symbol. In terms of 

the notation introduced with Eq.(32), Eq.(65) can be written as 

[*]{q} + [*,]*{*.} = W + {Qle)} (66) 

One  approach to the  solution of our  system is  to  form the  second 

time  derivative  of  Eq.(64); 

t*qm} = _.!_{*} _jL([*q]){q} (67) 

where 

and 

a2 f  Jl 

dt2 [-{q 
{h} 

qP(t)} 

j2 32hk = -atdijdw +dj'j) 

dt -[*„] = 

d rflh-i 
dtLdqJ 

[0] 
(68) 
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The elements of the upper partition of the matrix in Eq.(68) are found 

to be 

_d_3hjL 

dt 3r, 
= 2{[rj(ej-ei)sin(9j-ei) + fi -r, cosfG-j-eiHSi, 

+ [r^ej-Gi) sin^-Oi) + ij - ±i cos (ft,^)] 5^ } 

dt 36, 
= 2[(rirj+rirj)sin(e;i-ei) + r^ {Q^-^) cos (8^) ](bi, -8W ) 

d 3h, 

dt dz( 

Lk _ = 2(zj-zi)(8j,-8i<) 

Writing Egs.(66) and (67) together we have 

"tan [<&q]
Tlr{qr 

_[*q] [0] J[{X} 
{*} + {Q,e'} 

dt2 
(69) 

Equations (69) can be solved simultaneously for the acceleration 

variables and the Lagrange multipliers, to be followed by numerical 

integration for the generalized coordinates. 

Constraint Forces 

To calculate the tether tension forces we first establish the 

corresponding generalized force expressions. As was the case with the 

extensible tethers, we denote the force acting on P±   arising from its 

connection to JR by the vector fi;j , and let fAj denote the scalar 

tension. Then we can write 

For a tether in tension fij>0, while f1;j<0 indicates compression. If P± 

and R are not connected, fi:j=0. Unlike the situation for extensible 

tethers, where fi;j was expressible as an explicit function of the system 

state variables, here the terms f±j are unknowns. The total force on P± 

from all its tether connections is, again, 
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f, i = x?i: 
j*i 

The above expression is identical to that obtained for extensible 

tethers. The virtual work performed by the tether forces is again given 

by Eg.(19), which leads to the generalized forces given in Eg.(24). Here 

we rewrite Eg.(24) as 

QT  =  I Eil   Ei: r1H] 

where 

^=1 ij 

f  f •      "\ 

vfiN   , 

CTiJ 

"13 

= [r]A 
fi2 

vfiN J 

(70) 

Introducing the vector of tether tensions; {T}
T
 = {Tx T- 

write 

Tn }, we can 

fi2 

v f iN J 

=  [B]i{T} (71) 

where [B^ is a Boolean selection matrix that establishes the 

correspondence between particle pairs and their associated tethers. 

Substituting Eg.(71) into (70) we obtain 

Of  = [Hi [BUT} = [A^T} 

The vector of generalized forces associated with the tether tensions for 

the entire system is assembled as 

(»l = {Q<i>} 

fQ? 1 " [A]x " 

fi? = 
[A]2 

Q(i) [A]N 

{T} = [A]{T} (72) 
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In addition to the tether tension forces, we consider external 

constraint forces to act on each particle to ensure satisfaction of the 

prescribed motion constraints. These forces may be thought to arise from 

thrusters. As was shown in the development leading to Eq.(34), and 

continuing the notation established there, the generalized forces 

associated with external constraint forces can be expressed as 

{F
(C
'}
T
=(F£> r^ F£>JF£> r^ F£'|-) (73) 

It is known from analytical mechanics theory that the generalized 

forces associated with the constraints of Eq.(64) are given by 

{Q(c'} = -l*,lT{M (74) 

The generalized constraint forces of Eq.(74) arise from the inextensible 

tethers and the external particle constraint forces needed to enforce 

any additional prescribed motion conditions. In terms of Eqs.(72)-(74) 

we write 

"[«>q]
T{M = [A]{T} + {F(C)} (75) 

We are interested in finding the tether tension forces that most 

closely satisfy the left hand side of Eq.(75), i.e. we wish to solve the 

overdetermrned system 

[A]{T} = -[<I>q]
T{>.} 

The Moore-Penrose generalized inverse'51 provides us with the desired 

solution 

{T} = -[A]+[<E>q]
T{M (76) 

Substituting Eq.(76) into (75) yields a system of particle forces 

sufficient to complete satisfaction of the constraints 

{F(c)} = ([A] [A]+-[l])[<&q]
T{X.} 
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